Kohnert's rule for flagged Schur modules
نویسندگان
چکیده
Flagged Schur modules generalize the irreducible representations of general linear group under action Borel subalgebra. Their characters include many important generalizations polynomials, such as Demazure characters, flagged skew and Schubert polynomials. In this paper, we prove can be computed using a simple combinatorial algorithm due to Kohnert if only indexing diagram is northwest. This gives new proof that are nonnegative sums representation theoretic interpretation for
منابع مشابه
The Flagged Double Schur Function
The double Schur function is a natural generalization of the factorial Schur function introduced by Biedenharn and Louck. It also arises as the symmetric double Schubert polynomial corresponding to a class of permutations called Grassmannian permutations introduced by A. Lascoux. We present a lattice path interpretation of the double Schur function based on a flagged determinantal definition, w...
متن کاملFlagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators
Flagged Schur functions are generalizations of Schur functions. They appear in the work of Lascoux and Schutzenberger [2] in their study of Schubert polynomials. Gessel [ 1 ] has shown that flagged Schur functions can be expressed both as a determinant in the complete homogeneous symmetric functions and in terms of column-strict tableaux just as can ordinary Schur functions (Jacobi-Trudi identi...
متن کاملTilting Modules for Cyclotomic Schur Algebras
This paper investigates the tilting modules of the cyclotomic q–Schur algebras, the Young modules of the Ariki–Koike algebras, and the interconnections between them. The main tools used to understand the tilting modules are contragredient duality, and the Specht filtrations and dual Specht filtrations of certain permutation modules. Surprisingly, Weyl filtrations — which are in general more pow...
متن کاملA Borel-Weil Construction for Schur Modules
We present a generalization of the classical Schur modules of GL(N) exhibiting the same interplay among algebra, geometry, and combinatorics. A generalized Young diagram D is an arbitrary finite subset of N × N. For each D, we define the Schur module SD of GL(N). We introduce a projective variety FD and a line bundle LD, and describe the Schur module in terms of sections of LD. For diagrams wit...
متن کاملSchur Modules and Segre Varieties
This paper is an elementary introduction to the methods of Landsberg and Manivel, [3] for finding the ideals of secant varieties to Segre varieties. We cover only the most basic topics from [3], but hope that since this is a topic which is rarely made explicit, these notes will be of some use. We assume the reader is familiar with the basic operations of multilinear algebra: tensor, symmetric, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2023
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.10.032